Properties of the neural network sieve bootstrap
F. Giordano,
M. La Rocca and
Cira Perna
Journal of Nonparametric Statistics, 2011, vol. 23, issue 3, 803-817
Abstract:
In this paper, a sieve bootstrap scheme, the neural network sieve bootstrap, for nonlinear time series is proposed. The approach, which is nonparametric in its spirit, retains the conceptual simplicity of a classical residual bootstrap, and it has some advantages with respect to the blockwise schemes and kernel bootstrap techniques. The resampling scheme from the residuals of the feedforward neural networks is shown to be asymptotically justified. A Monte Carlo simulation study shows that the procedure performs similar to the autoregressive (AR)-sieve bootstrap for linear processes, while it outperforms the AR-sieve bootstrap, the moving block bootstrap and kernel bootstrap for nonlinear processes, both in terms of bias and variability.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2011.561344 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:23:y:2011:i:3:p:803-817
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2011.561344
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().