Bayesian estimation and inference for generalised partial linear models using shape-restricted splines
Mary Meyer,
Amber Hackstadt and
Jennifer Hoeting
Journal of Nonparametric Statistics, 2011, vol. 23, issue 4, 867-884
Abstract:
A Bayesian approach to generalised partial linear regression models is proposed, where regression functions are modelled nonparametrically using regression splines, with assumptions about shape and smoothness. The knots may be modelled as fixed or free, incorporating a reversible-jump Markov chain Monte Carlo algorithm for the latter. The modelling framework along with vague prior distributions provides more flexibility compared with other Bayesian constrained smoothers; further, the method is simpler, more intuitive, easier to implement, and computationally faster. Inference concerning parametrically modelled covariates can be accomplished using approximate marginal distributions, with standard Bayes model selection methods for more general inference. Simulations show that the inference methods have desirable Bayesian and frequentist properties. In particular, these methods often perform similarly to standard parametric methods when the parametric assumptions are met and are superior when the assumptions are violated. The R code to implement the methods described here is available at www.stat.colostate.edu/~meyer/code.htm.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2011.597852 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:23:y:2011:i:4:p:867-884
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2011.597852
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().