Nonparametric confidence intervals for the integral of a function of an unknown density
Christopher Withers and
Saralees Nadarajah
Journal of Nonparametric Statistics, 2011, vol. 23, issue 4, 943-966
Abstract:
Given a random sample of size n from an unknown distribution function F on ℝ with finite derivatives and density f, we wish to estimate for a smooth function L. Examples are t f2, the differential entropy and the Kullback–Leibler distance. We estimate f using a kernel estimate [fcirc] based on a kernel of order p, say. We show that {[fcirc](xi), i=1, …, s} satisfies the Cornish–Fisher assumption with respect to m=nh. It follows that the corresponding estimate θˆ has a bias of magnitude O(hq+m−1), where p≤q≤2p depends on L. We show that the variance of θˆ has magnitude O(n−1) for a suitable bandwidth. For the regular case, we give one-sided and two-sided confidence intervals for θ with errors of magnitude O(M−1/2) and O(M−1), where M=nh2. We present simulation studies to show the practical values of the results.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2011.576762 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:23:y:2011:i:4:p:943-966
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2011.576762
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().