Linear rank tests of uniformity: understanding inconsistent outcomes and the construction of new tests
Anna Bargagliotti and
Michael Orrison
Journal of Nonparametric Statistics, 2012, vol. 24, issue 2, 481-495
Abstract:
Several nonparametric tests exist to test for differences among alternatives when using ranked data. Testing for differences among alternatives amounts to testing for uniformity over the set of possible permutations of the alternatives. Well-known tests of uniformity, such as the Friedman test or the Anderson test, are based on the impact of the usual limiting theorems (e.g. central limit theorem) and the results of different summary statistics (e.g. mean ranks, marginals, and pairwise ranks). Inconsistencies can occur among statistical tests’ outcomes – different statistical tests can yield different outcomes when applied to the same ranked data. In this paper, we describe a conceptual framework that naturally decomposes the underlying ranked data space. Using the framework, we explain why test results can differ and how their differences are related. In practice, one may choose a test based on the power or the structure of the ranked data. We discuss the implications of these choices and illustrate that for data meeting certain conditions, no existing test is effective in detecting nonuniformity. Finally, using a real data example, we illustrate how to construct new linear rank tests of uniformity.
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2011.649282 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:24:y:2012:i:2:p:481-495
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2011.649282
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().