Weighted quantile regression for AR model with infinite variance errors
Zhao Chen,
Runze Li and
Yaohua Wu
Journal of Nonparametric Statistics, 2012, vol. 24, issue 3, 715-731
Abstract:
Autoregressive (AR) models with finite variance errors have been well studied. This paper is concerned with AR models with heavy-tailed errors, which is useful in various scientific research areas. Statistical estimation for AR models with infinite variance errors is very different from those for AR models with finite variance errors. In this paper, we consider a weighted quantile regression for AR models to deal with infinite variance errors. We further propose an induced smoothing method to deal with computational challenges in weighted quantile regression. We show that the difference between weighted quantile regression estimate and its smoothed version is negligible. We further propose a test for linear hypothesis on the regression coefficients. We conduct Monte Carlo simulation study to assess the finite sample performance of the proposed procedures. We illustrate the proposed methodology by an empirical analysis of a real-life data set.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2012.698280 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:24:y:2012:i:3:p:715-731
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2012.698280
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().