Regression analysis of clustered interval-censored failure time data with the additive hazards model
Junlong Li,
Chunjie Wang and
Jianguo Sun
Journal of Nonparametric Statistics, 2012, vol. 24, issue 4, 1041-1050
Abstract:
This paper discusses regression analysis of clustered failure time data, which means that the failure times of interest are clustered into small groups instead of being independent. Clustering occurs in many fields such as medical studies. For the problem, a number of methods have been proposed, but most of them apply only to clustered right-censored data. In reality, the failure time data is often interval-censored. That is, the failure times of interest are known only to lie in certain intervals. We propose an estimating equation-based approach for regression analysis of clustered interval-censored failure time data generated from the additive hazards model. A major advantage of the proposed method is that it does not involve the estimation of any baseline hazard function. Both asymptotic and finite sample properties of the proposed estimates of regression parameters are established and the method is illustrated by the data arising from a lymphatic filariasis study.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2012.720256 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:24:y:2012:i:4:p:1041-1050
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2012.720256
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().