Robustness of random forests for regression
Marie-Hélène Roy and
Denis Larocque
Journal of Nonparametric Statistics, 2012, vol. 24, issue 4, 993-1006
Abstract:
In this paper, we empirically investigate the robustness of random forests for regression problems. We also investigate the performance of six variations of the original random forest method, all aimed at improving robustness. These variations are based on three main ideas: (1) robustify the aggregation method, (2) robustify the splitting criterion and (3) taking a robust transformation of the response. More precisely, with the first idea, we use the median (or weighted median), instead of the mean, to combine the predictions from the individual trees. With the second idea, we use least-absolute deviations from the median, instead of least-squares, as splitting criterion. With the third idea, we build the trees using the ranks of the response instead of the original values. The competing methods are compared via a simulation study with artificial data using two different types of contaminations and also with 13 real data sets. Our results show that all three ideas improve the robustness of the original random forest algorithm. However, a robust aggregation of the individual trees is generally more profitable than a robust splitting criterion.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2012.715161 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:24:y:2012:i:4:p:993-1006
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2012.715161
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().