EconPapers    
Economics at your fingertips  
 

Lag selection in stochastic additive models

Shuping Jiang and Lan Xue

Journal of Nonparametric Statistics, 2013, vol. 25, issue 1, 129-146

Abstract: We studied stochastic additive models (SAM) for nonlinear time series data. We proposed a penalised polynomial spline (PPS) method for estimation and lag selection in SAM. This method approximated the nonparametric functions by polynomial splines and performed variable/lag selection by imposing a penalty on the empirical L 2 norm of the spline functions. Under geometrically α-mixing condition, we established that the resulting estimator converges at the same rate as in univariate smoothing. Our method also selected the correct model with probability approaching to one as the sample size increased. A coordinate-wise algorithm was developed for finding the solution of the PPS problem. Extensive Monte Carlo studies had been conducted and showed that the proposed procedure worked effectively even with moderate sample size. We also illustrated the proposed method by analysing the US employment time series.

Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2012.754440 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:25:y:2013:i:1:p:129-146

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2012.754440

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:25:y:2013:i:1:p:129-146