B-spline estimation for semiparametric varying-coefficient partially linear regression with spatial data
Tang Qingguo
Journal of Nonparametric Statistics, 2013, vol. 25, issue 2, 361-378
Abstract:
This paper considers a varying-coefficient partially linear regression with spatial data. A global smoothing procedure is developed by using B-spline function approximations for estimating the unknown parameters and coefficient functions. Under mild regularity assumptions, the asymptotic distribution of the estimator of the unknown parameter vector is established. The global convergence rates of the B-spline estimators of the unknown coefficient functions are established. The asymptotic distributions of the B-spline estimators of the unknown coefficient functions are also derived. Finite sample properties of our procedures are studied through Monte Carlo simulations. A real data example about Boston housing data is used to illustrate our proposed methodology.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2012.758263 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:25:y:2013:i:2:p:361-378
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2012.758263
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().