EconPapers    
Economics at your fingertips  
 

One-sided cross-validation for nonsmooth regression functions

Olga Y. Savchuk, Jeffrey D. Hart and Simon P. Sheather

Journal of Nonparametric Statistics, 2013, vol. 25, issue 4, 889-904

Abstract: The one-sided cross-validation (OSCV) method is shown to be robust to lack of smoothness in the regression function. Two corrections for the case where the regression function has a discontinuous first derivative are proposed. Simulation results suggest that proposed modifications of the OSCV method are efficient for regression functions whose first derivative is discontinuous at more than two points. The OSCV method and its modification outperform the cross-validation method and the Ruppert-Sheather-Wand plug-in method in a data example involving a function that, potentially, has one discontinuity in its derivative.

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2013.817575 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:25:y:2013:i:4:p:889-904

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2013.817575

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:25:y:2013:i:4:p:889-904