Spline-based semiparametric estimation of partially linear Poisson regression with single-index models
Minggen Lu and
Dana Loomis
Journal of Nonparametric Statistics, 2013, vol. 25, issue 4, 905-922
Abstract:
Epidemiological studies have shown that the high levels of air pollution are associated with the increased mortality. To further characterise the health effects of air pollutants, we propose a spline-based partially linear Poisson single-index model to study the relationship of multi-dimensional air pollution exposure to mortality. B -splines are used to approximate the unknown regression function. A modified Fisher scoring method is applied to simultaneously estimate the linear coefficients and the regression function. The estimator of the regression function is consistent with a better than cubic root convergence rate and the estimators of regression parameters are asymptotically normal and efficient. Also a simple and consistent variance estimation approach based on least-squares method is proposed. An extensive Monte Carlo study is conducted to evaluate the finite sample performance of the proposed spline approach. The method is illustrated using data from an epidemiological study of ambient fine particles.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2013.817576 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:25:y:2013:i:4:p:905-922
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2013.817576
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().