A semiparametric extended hazard regression model with time-dependent covariates
Yi-Kuan Tseng,
Ken-Ning Hsu and
Ya-Fang Yang
Journal of Nonparametric Statistics, 2014, vol. 26, issue 1, 115-128
Abstract:
We introduce a general class of semiparametric hazard regression models, called extended hazard (EH) models, that are designed to accommodate various survival schemes with time-dependent covariates. The EH model contains both the Cox model and the accelerated failure time (AFT) model as its subclasses so that we can use this nested structure to perform model selection between the Cox model and the AFT model. A class of estimating equations using counting process and martingale techniques is developed to estimate the regression parameters of the proposed model. The performance of the estimating procedure and the impact of model misspecification are assessed through simulation studies. Two data examples, Stanford heart transplant data and Mediterranean fruit flies, egg-laying data, are used to demonstrate the usefulness of the EH model.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2013.836521 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:26:y:2014:i:1:p:115-128
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2013.836521
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().