Bootstrap bandwidth selection method for local linear estimator in exponential family models
K. Żychaluk
Journal of Nonparametric Statistics, 2014, vol. 26, issue 2, 305-319
Abstract:
Many biological experiments involve data whose distribution belongs to the exponential family. Such data are often analysed using generalised linear models but this method requires specification of the link function which can have strong influence on the resulting estimate. Instead a local method based on quasi-likelihood can be used, but the choice of the smoothing parameter is crucial for its performance. A bootstrap bandwidth selection method is proposed and shown to be consistent. Examples of application to data from biological and psychometric experiments are given.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2014.885023 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:26:y:2014:i:2:p:305-319
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2014.885023
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().