EconPapers    
Economics at your fingertips  
 

Goodness-of-fit tests based on the distance between the Dirichlet process and its base measure

Luai Al Labadi and Mahmoud Zarepour

Journal of Nonparametric Statistics, 2014, vol. 26, issue 2, 341-357

Abstract: The Dirichlet process is a fundamental tool in studying Bayesian nonparametric inference. The Dirichlet process has several sum representations, where each one of these representations highlights some aspects of this important process. In this paper, we use the sum representations of the Dirichlet process to derive explicit expressions that are used to calculate Kolmogorov, Lévy, and Cramér-von Mises distances between the Dirichlet process and its base measure. The derived expressions of the distance are used to select a proper value for the concentration parameter of the Dirichlet process. These tools are also used in a goodness-of-fit test. Illustrative examples and simulation results are included.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2013.856431 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:26:y:2014:i:2:p:341-357

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2013.856431

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:26:y:2014:i:2:p:341-357