Volatility estimation from short time series of stock prices
Nikolai Dokuchaev
Journal of Nonparametric Statistics, 2014, vol. 26, issue 2, 373-384
Abstract:
We consider estimation of the historical volatility of stock prices. It is assumed that the stock prices are represented as time series formed as samples of the solution of a stochastic differential equation with random and time-varying parameters; these parameters are not observable directly and have unknown evolution law. The price samples are available with limited frequency only. In this setting, the estimation has to be based on short time series, and the estimation error can be significant. We suggest some supplements to the existing nonparametric methods of volatility estimation. Two modifications of the standard summation formula for the volatility are derived. In addition, a linear transformation eliminating the appreciation rate and preserving the volatility is suggested.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2013.844805 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:26:y:2014:i:2:p:373-384
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2013.844805
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().