EconPapers    
Economics at your fingertips  
 

Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density

Han Lin Shang

Journal of Nonparametric Statistics, 2014, vol. 26, issue 3, 599-615

Abstract: We investigate the issue of bandwidth estimation in a functional nonparametric regression model with function-valued, continuous real-valued and discrete-valued regressors under the framework of unknown error density. Extending from the recent work of Shang (2013) ['Bayesian Bandwidth Estimation for a Nonparametric Functional Regression Model with Unknown Error Density', Computational Statistics & Data Analysis , 67, 185-198], we approximate the unknown error density by a kernel density estimator of residuals, where the regression function is estimated by the functional Nadaraya-Watson estimator that admits mixed types of regressors. We derive a likelihood and posterior density for the bandwidth parameters under the kernel-form error density, and put forward a Bayesian bandwidth estimation approach that can simultaneously estimate the bandwidths. Simulation studies demonstrated the estimation accuracy of the regression function and error density for the proposed Bayesian approach. Illustrated by a spectroscopy data set in the food quality control, we applied the proposed Bayesian approach to select the optimal bandwidths in a functional nonparametric regression model with mixed types of regressors.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2014.916806 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:26:y:2014:i:3:p:599-615

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2014.916806

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:gnstxx:v:26:y:2014:i:3:p:599-615