Modelling functional additive quantile regression using support vector machines approach
Christophe Crambes,
Ali Gannoun and
Yousri Henchiri
Journal of Nonparametric Statistics, 2014, vol. 26, issue 4, 639-668
Abstract:
This work deals with conditional quantiles estimation when several functional covariates are involved, via a support vector machines nonparametric methodology. We establish weak consistency of this estimator. To fit the additive components, we use an ordinary backfitting procedure combined with an iterative reweighted least-squares procedure to solve the penalised minimisation problem. This procedure makes it possible to derive a split sample method for choosing the hyper-parameters of the model. The performances of the proposed technique, in terms of forecast accuracy, are evaluated through simulation and a real dataset study.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2014.941365 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:26:y:2014:i:4:p:639-668
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2014.941365
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().