EconPapers    
Economics at your fingertips  
 

Rank-based ridge estimation in multiple linear regression

Asuman Turkmen and Omer Ozturk

Journal of Nonparametric Statistics, 2014, vol. 26, issue 4, 737-754

Abstract: Multicollinearity and model misspecification are frequently encountered problems in practice that produce undesirable effects on classical ordinary least squares (OLS) regression estimator. The ridge regression estimator is an important tool to reduce the effects of multicollinearity, but it is still sensitive to a model misspecification of error distribution. Although rank-based statistical inference has desirable robustness properties compared to the OLS procedures, it can be unstable in the presence of multicollinearity. This paper introduces a rank regression estimator for regression parameters and develops tests for general linear hypotheses in a multiple linear regression model. The proposed estimator and the tests have desirable robustness features against the multicollinearity and model misspecification of error distribution. Asymptotic behaviours of the proposed estimator and the test statistics are investigated. Real and simulated data sets are used to demonstrate the feasibility and the performance of the estimator and the tests.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2014.964714 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:26:y:2014:i:4:p:737-754

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2014.964714

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:26:y:2014:i:4:p:737-754