Multivariate partially linear single-index models: Bayesian analysis
Wai-Yin Poon and
Hai-Bin Wang
Journal of Nonparametric Statistics, 2014, vol. 26, issue 4, 755-768
Abstract:
Partially linear single-index models play important roles in advanced non-/semi-parametric statistics due to their generality and flexibility. We generalise these models from univariate response to multivariate responses. A Bayesian method with free-knot spline is used to analyse the proposed models, including the estimation and the prediction, and a Metropolis-within-Gibbs sampler is provided for posterior exploration. We also utilise the partially collapsed idea in our algorithm to speed up the convergence. The proposed models and methods of analysis are demonstrated by simulation studies and are applied to a real data set.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2014.965706 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:26:y:2014:i:4:p:755-768
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2014.965706
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().