Family of the generalised gamma kernels: a generator of asymmetric kernels for nonnegative data
Masayuki Hirukawa and
Mari Sakudo
Journal of Nonparametric Statistics, 2015, vol. 27, issue 1, 41-63
Abstract:
Unlike symmetric kernels, so far exploring asymptotics on asymmetric kernels has relied on diversified approaches. This paper proposes a family of the generalised gamma (GG) kernels that is built on the probability density function of the GG distribution [Stacy, E.W. (1962), 'A Generalization of the Gamma Distribution', Annals of Mathematical Statistics , 33, 1187-1192] and a few common conditions. The family can generate asymmetric kernels that share appealing properties with the modified gamma kernel [Chen, S.X. (2000), 'Probability Density Function Estimation Using Gamma Kernels', Annals of the Institute of Statistical Mathematics , 52, 471-480]. Asymptotics on the kernels generated from the family can be delivered by manipulating the conditions directly, as with symmetric kernels.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2014.998669 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:27:y:2015:i:1:p:41-63
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2014.998669
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().