A multivariate extension of a vector of two-parameter Poisson-Dirichlet processes
Weixuan Zhu and
Fabrizio Leisen
Journal of Nonparametric Statistics, 2015, vol. 27, issue 1, 89-105
Abstract:
In the big data era there is a growing need to model the main features of large and non-trivial data sets. This paper proposes a Bayesian nonparametric prior for modelling situations where data are divided into different units with different densities, allowing information pooling across the groups. Leisen and Lijoi [(2011), 'Vectors of Poisson-Dirichlet processes', J. Multivariate Anal. , 102, 482-495] introduced a bivariate vector of random probability measures with Poisson-Dirichlet marginals where the dependence is induced through a Lévy's Copula. In this paper the same approach is used for generalising such a vector to the multivariate setting. A first important contribution is the derivation of the Laplace functional transform which is non-trivial in the multivariate setting. The Laplace transform is the basis to derive the exchangeable partition probability function (EPPF) and, as a second contribution, we provide an expression of the EPPF for the multivariate setting. Finally, a novel Markov Chain Monte Carlo algorithm for evaluating the EPPF is introduced and tested. In particular, numerical illustrations of the clustering behaviour of the new prior are provided.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2014.966103 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:27:y:2015:i:1:p:89-105
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2014.966103
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().