Estimation of a sparse and spiked covariance matrix
Heng Lian and
Zengyan Fan
Journal of Nonparametric Statistics, 2015, vol. 27, issue 2, 241-252
Abstract:
We suggest a method for estimating a covariance matrix that can be represented as a sum of a sparse low-rank matrix and a diagonal matrix. Our formulation is based on penalized quadratic loss, which is a convex problem that can be solved via incremental gradient and proximal method. In contrast to other spiked covariance matrix estimation approaches that are related to principal component analysis and factor analysis, our method has a simple formulation and does not constrain entire rows and columns of the matrix to be zero. We further discuss a penalized entropy loss method that is nevertheless nonconvex and necessitates a majorization-minimization algorithm in combination with the incremental gradient and proximal method. We carry out simulations to demonstrate the finite-sample properties focusing on high-dimensional covariance matrices. Finally, the proposed method is illustrated using a gene expression data set.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2015.1022545 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:27:y:2015:i:2:p:241-252
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2015.1022545
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().