Asymptotic normality of locally modelled regression estimator for functional data
Zhiyong Zhou and
Zhengyan Lin
Journal of Nonparametric Statistics, 2016, vol. 28, issue 1, 116-131
Abstract:
We focus on the nonparametric regression of a scalar response on a functional explanatory variable. As an alternative to the well-known Nadaraya-Watson estimator for regression function in this framework, the locally modelled regression estimator performs very well [cf. [Barrientos-Marin, J., Ferraty, F., and Vieu, P. (2010), ‘Locally Modelled Regression and Functional Data’, Journal of Nonparametric Statistics , 22, 617--632]. In this paper, the asymptotic properties of locally modelled regression estimator for functional data are considered. The mean-squared convergence as well as asymptotic normality for the estimator are established. We also adapt the empirical likelihood method to construct the point-wise confidence intervals for the regression function and derive the Wilk's phenomenon for the empirical likelihood inference. Furthermore, a simulation study is presented to illustrate our theoretical results.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2015.1114112 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:28:y:2016:i:1:p:116-131
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2015.1114112
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().