Proportional cause-specific reversed hazards model
P.G. Sankaran and
S. Anjana
Journal of Nonparametric Statistics, 2016, vol. 28, issue 1, 68-83
Abstract:
The proportional reversed hazards model explains the multiplicative effect of covariates on the baseline reversed hazard rate function of lifetimes. In the present study, we introduce a proportional cause-specific reversed hazards model. The proposed regression model facilitates the analysis of failure time data with multiple causes of failure under left censoring. We estimate the regression parameters using a partial likelihood approach. We provide Breslow's type estimators for the cumulative cause-specific reversed hazard rate functions. Asymptotic properties of the estimators are discussed. Simulation studies are conducted to assess their performance. We illustrate the applicability of the proposed model using a real data set.
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2015.1112010 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:28:y:2016:i:1:p:68-83
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2015.1112010
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().