EconPapers    
Economics at your fingertips  
 

Asymptotic normality of kernel estimators based upon incomplete data

M. Boukeloua and F. Messaci

Journal of Nonparametric Statistics, 2016, vol. 28, issue 3, 469-486

Abstract: In this paper, we are concerned with nonparametric estimation of the density and the failure rate functions of a random variable X which is at risk of being censored. First, we establish the asymptotic normality of a kernel density estimator in a general censoring setup. Then, we apply our result in order to derive the asymptotic normality of both the density and the failure rate estimators in the cases of right, twice and doubly censored data. Finally, the performance and the asymptotic Gaussian behaviour of the studied estimators, based on either doubly or twice censored data, are illustrated through a simulation study.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2016.1164312 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:28:y:2016:i:3:p:469-486

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2016.1164312

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:28:y:2016:i:3:p:469-486