Variable selection for additive model via cumulative ratios of empirical strengths total
Miao Yang,
Lan Xue and
Lijian Yang
Journal of Nonparametric Statistics, 2016, vol. 28, issue 3, 595-616
Abstract:
We propose a data-driven method to select significant variables in additive model via spline estimation. The additive structure of the regression model is imposed to overcome the ‘curse of dimensionality’, while the spline estimators provide a good approximation to the additive components of the model. The additive components are ordered according to their empirical strengths, and the significant variables are chosen at the first crossing of a predetermined threshold by the CUmulative Ratios of Empirical Strengths Total of the components. Consistency of the proposed method is established when the number of variables are allowed to diverge with sample size, while extensive Monte-Carlo study demonstrates superior performance of the proposed method and its advantages over the BIC method of Huang and Yang [(2004), ‘Identification of Nonlinear: Additive Autoregressive Models’, Journal of the Royal Statistical Society Series B , 66, 463--477] in terms of speed and accuracy.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2016.1191633 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:28:y:2016:i:3:p:595-616
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2016.1191633
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().