EconPapers    
Economics at your fingertips  
 

Variable selection for additive model via cumulative ratios of empirical strengths total

Miao Yang, Lan Xue and Lijian Yang

Journal of Nonparametric Statistics, 2016, vol. 28, issue 3, 595-616

Abstract: We propose a data-driven method to select significant variables in additive model via spline estimation. The additive structure of the regression model is imposed to overcome the ‘curse of dimensionality’, while the spline estimators provide a good approximation to the additive components of the model. The additive components are ordered according to their empirical strengths, and the significant variables are chosen at the first crossing of a predetermined threshold by the CUmulative Ratios of Empirical Strengths Total of the components. Consistency of the proposed method is established when the number of variables are allowed to diverge with sample size, while extensive Monte-Carlo study demonstrates superior performance of the proposed method and its advantages over the BIC method of Huang and Yang [(2004), ‘Identification of Nonlinear: Additive Autoregressive Models’, Journal of the Royal Statistical Society Series B , 66, 463--477] in terms of speed and accuracy.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2016.1191633 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:28:y:2016:i:3:p:595-616

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2016.1191633

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:28:y:2016:i:3:p:595-616