Tests for stochastic ordering under biased sampling
Hsin-wen Chang,
Hammou El Barmi and
Ian W. McKeague
Journal of Nonparametric Statistics, 2016, vol. 28, issue 4, 659-682
Abstract:
In two-sample comparison problems it is often of interest to examine whether one distribution function majorises the other, that is, for the presence of stochastic ordering. This paper develops a nonparametric test for stochastic ordering from size-biased data, allowing the pattern of the size bias to differ between the two samples. The test is formulated in terms of a maximally selected local empirical likelihood statistic. A Gaussian multiplier bootstrap is devised to calibrate the test. Simulation results show that the proposed test outperforms an analogous Wald-type test, and that it provides substantially greater power over ignoring the size bias. The approach is illustrated using data on blood alcohol concentration of drivers involved in car accidents, where the size bias is due to drunker drivers being more likely to be involved in accidents. Further, younger drivers tend to be more affected by alcohol, so in making comparisons with older drivers the analysis is adjusted for differences in the patterns of size bias.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2016.1225048 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:28:y:2016:i:4:p:659-682
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2016.1225048
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().