Theoretical grounding for estimation in conditional independence multivariate finite mixture models
Xiaotian Zhu and
David R. Hunter
Journal of Nonparametric Statistics, 2016, vol. 28, issue 4, 683-701
Abstract:
For the nonparametric estimation of multivariate finite mixture models with the conditional independence assumption, we propose a new formulation of the objective function in terms of penalised smoothed Kullback–Leibler distance. The nonlinearly smoothed majorisation-minimisation (NSMM) algorithm is derived from this perspective. An elegant representation of the NSMM algorithm is obtained using a novel projection-multiplication operator, a more precise monotonicity property of the algorithm is discovered, and the existence of a solution to the main optimisation problem is proved for the first time.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2016.1225049 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:28:y:2016:i:4:p:683-701
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2016.1225049
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().