Complete convergence for weighted sums of END random variables and its application to nonparametric regression models
Aiting Shen
Journal of Nonparametric Statistics, 2016, vol. 28, issue 4, 702-715
Abstract:
In this article, the complete convergence for weighted sums of extended negatively dependent (END, for short) random variables is investigated. Some sufficient conditions for the complete convergence are provided. In addition, the Marcinkiewicz–Zygmund type strong law of large numbers for weighted sums of END random variables is obtained. The results obtained in the article generalise and improve the corresponding one of Wang et al. [(2014b), ‘On Complete Convergence for an Extended Negatively Dependent Sequence’, Communications in Statistics-Theory and Methods, 43, 2923–2937]. As an application, the complete consistency for the estimator of nonparametric regression model is established.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2016.1225050 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:28:y:2016:i:4:p:702-715
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2016.1225050
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().