Weighted bootstrapped kernel density estimators in two-sample problems
Majid Mojirsheibani and
William Pouliot
Journal of Nonparametric Statistics, 2017, vol. 29, issue 1, 61-84
Abstract:
A weighted bootstrap method is proposed to approximate the distribution of the $ L_p $ Lp ( $ 1\leq p<\infty $ 1≤p<∞) norms of two-sample statistics involving kernel density estimators. Using an approximation theorem of Horváth, Kozkoszka and Steineback [(2000) ‘Approximations for Weighted Bootstrap Processes with an Application’, Statistics and Probability Letters, 48, 59–70], that allows one to replace the weighted bootstrap empirical process by a sequence of Gaussian processes, we establish an unconditional bootstrap central limit theorem for such statistics. The proposed method is quite straightforward to implement in practice. Furthermore, through some simulation studies, it will be shown that, depending on the weights chosen, the proposed weighted bootstrap approximation can sometimes outperform both the classical large-sample theory as well as Efron's [(1979) ‘Bootstrap Methods: Another Look at the Jackknife’, Annals of Statistics, 7, 1–26] original bootstrap algorithm.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2016.1253842 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:29:y:2017:i:1:p:61-84
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2016.1253842
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().