A nonparametric procedure for testing partially ranked data
Jyh-Shyang Wu and
Wen-Shuenn Deng ()
Journal of Nonparametric Statistics, 2017, vol. 29, issue 2, 213-230
Abstract:
In consumer preference studies, it is common to seek a complete ranking of a variety of, say N, alternatives or treatments. Unfortunately, as N increases, it becomes progressively more confusing and undesirable for respondents to rank all N alternatives simultaneously. Moreover, the investigators may only be interested in consumers’ top few choices. Therefore, it is desirable to accommodate the setting where each survey respondent ranks only her/his most preferred k (k < N) alternatives. In this paper, we propose a simple procedure to test the independence of N alternatives and the top-k ranks, such that the value of k can be predetermined before securing a set of partially ranked data or be at the discretion of the investigator in the presence of complete ranking data. The asymptotic distribution of the proposed test under root-n local alternatives is established. We demonstrate our procedure with two real data sets.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2017.1303055 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:29:y:2017:i:2:p:213-230
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2017.1303055
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().