Nonparametric regression method for broad sense agreement
A. K. M. Fazlur Rahman,
Limin Peng,
Amita Manatunga and
Ying Guo
Journal of Nonparametric Statistics, 2017, vol. 29, issue 2, 280-300
Abstract:
Characterising the correspondence between an ordinal measurement and a continuous measurement is often of interest in mental health studies. To this end Peng et al. [(2011), ‘A Framework for Assessing Broad Sense Agreement Between Ordinal and Continuous Measurements’, Journal of the American Statistical Association, 106, 1592–1601] introduced the concept of broad sense agreement (BSA) and developed nonparametric estimation and inference for a BSA measure. In this work, we propose a nonparametric regression framework for BSA, which provides a robust tool to further investigate population heterogeneity in BSA. We develop inferential procedures including regression function estimation and hypothesis testing. Extensive simulation studies demonstrate satisfactory performance of the proposed method. We also apply the new method to a recent Grady Trauma Study and reveal an interesting impact of depression severity on the alignment between a self-reported symptom instrument and clinician diagnosis in posttraumatic stress disorder patients.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2017.1303058 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:29:y:2017:i:2:p:280-300
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2017.1303058
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().