EconPapers    
Economics at your fingertips  
 

An alternative local polynomial estimator for the error-in-variables problem

Xianzheng Huang and Haiming Zhou

Journal of Nonparametric Statistics, 2017, vol. 29, issue 2, 301-325

Abstract: We consider the problem of estimating a regression function when a covariate is measured with error. Using the local polynomial estimator of Delaigle et al. [(2009), ‘A Design-adaptive Local Polynomial Estimator for the Errors-in-variables Problem’, Journal of the American Statistical Association, 104, 348–359] as a benchmark, we propose an alternative way of solving the problem without transforming the kernel function. The asymptotic properties of the alternative estimator are rigorously studied. A detailed implementing algorithm and a computationally efficient bandwidth selection procedure are also provided. The proposed estimator is compared with the existing local polynomial estimator via extensive simulations and an application to the motorcycle crash data. The results show that the new estimator can be less biased than the existing estimator and is numerically more stable.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2017.1303060 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:29:y:2017:i:2:p:301-325

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2017.1303060

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:29:y:2017:i:2:p:301-325