Convergence rate of the kernel regression estimator for associated and truncated data
Z. Guessoum and
F. Hamrani
Journal of Nonparametric Statistics, 2017, vol. 29, issue 2, 425-446
Abstract:
This paper studies the behaviour of the kernel estimator of the regression function for associated data in the random left truncated model. The uniform strong consistency rate over a real compact set of the estimate is established. The finite sample performance of the estimator is investigated through extensive simulation studies.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2017.1303059 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:29:y:2017:i:2:p:425-446
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2017.1303059
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().