Estimation and inference of the joint conditional distribution for multivariate longitudinal data using nonparametric copulas
Minjung Kwak
Journal of Nonparametric Statistics, 2017, vol. 29, issue 3, 491-514
Abstract:
In this paper we study estimating the joint conditional distributions of multivariate longitudinal outcomes using regression models and copulas. For the estimation of marginal models, we consider a class of time-varying transformation models and combine the two marginal models using nonparametric empirical copulas. Our models and estimation method can be applied in many situations where the conditional mean-based models are not good enough. Empirical copulas combined with time-varying transformation models may allow quite flexible modelling for the joint conditional distributions for multivariate longitudinal data. We derive the asymptotic properties for the copula-based estimators of the joint conditional distribution functions. For illustration we apply our estimation method to an epidemiological study of childhood growth and blood pressure.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2017.1324966 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:29:y:2017:i:3:p:491-514
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2017.1324966
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().