EconPapers    
Economics at your fingertips  
 

Interquantile shrinkage in additive models

Zengyan Fan and Heng Lian

Journal of Nonparametric Statistics, 2017, vol. 29, issue 3, 561-576

Abstract: In this paper, we investigate the commonality of nonparametric component functions among different quantile levels in additive regression models. We propose two fused adaptive group Least Absolute Shrinkage and Selection Operator penalties to shrink the difference of functions between neighbouring quantile levels. The proposed methodology is able to simultaneously estimate the nonparametric functions and identify the quantile regions where functions are unvarying, and thus is expected to perform better than standard additive quantile regression when there exists a region of quantile levels on which the functions are unvarying. Under some regularity conditions, the proposed penalised estimators can theoretically achieve the optimal rate of convergence and identify the true varying/unvarying regions consistently. Simulation studies and a real data application show that the proposed methods yield good numerical results.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2017.1339305 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:29:y:2017:i:3:p:561-576

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2017.1339305

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:29:y:2017:i:3:p:561-576