Kernel-based global MLE of partial linear random effects models for longitudinal data
Lei Liu and
Zhihua Sun
Journal of Nonparametric Statistics, 2017, vol. 29, issue 3, 615-635
Abstract:
Random effects models have been playing a critical role for modelling longitudinal data. However, there are little studies on the kernel-based maximum likelihood method for semiparametric random effects models. In this paper, based on kernel and likelihood methods, we propose a pooled global maximum likelihood method for the partial linear random effects models. The pooled global maximum likelihood method employs the local approximations of the nonparametric function at a group of grid points simultaneously, instead of one point. Gaussian quadrature is used to approximate the integration of likelihood with respect to random effects. The asymptotic properties of the proposed estimators are rigorously studied. Simulation studies are conducted to demonstrate the performance of the proposed approach. We also apply the proposed method to analyse correlated medical costs in the Medical Expenditure Panel Survey data set.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2017.1339308 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:29:y:2017:i:3:p:615-635
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2017.1339308
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().