EconPapers    
Economics at your fingertips  
 

Block bootstrap for periodic characteristics of periodically correlated time series

Anna E. Dudek

Journal of Nonparametric Statistics, 2018, vol. 30, issue 1, 87-124

Abstract: This research is dedicated to the study of periodic characteristics of periodically correlated time series such as seasonal means, seasonal variances and autocovariance functions. Two bootstrap methods are used: the extension of the usual Moving Block Bootstrap (EMBB) and the Generalised Seasonal Block Bootstrap (GSBB). The first approach is proposed, because the usual Moving Block Bootstrap does not preserve the periodic structure contained in the data and cannot be applied for the considered problems. For the aforementioned periodic characteristics the bootstrap estimators are introduced and consistency of the EMBB in all cases is obtained. Moreover, the GSBB consistency results for seasonal variances and autocovariance function are presented. Additionally, the bootstrap consistency of both considered techniques for smooth functions of the parameters of interest is obtained. Finally, the simultaneous bootstrap confidence intervals are constructed. A simulation study to compare their actual coverage probabilities is provided. A real data example is presented.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2017.1404060 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:30:y:2018:i:1:p:87-124

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2017.1404060

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:30:y:2018:i:1:p:87-124