Remember the curse of dimensionality: the case of goodness-of-fit testing in arbitrary dimension
Ery Arias-Castro,
Bruno Pelletier and
Venkatesh Saligrama
Journal of Nonparametric Statistics, 2018, vol. 30, issue 2, 448-471
Abstract:
Despite a substantial literature on nonparametric two-sample goodness-of-fit testing in arbitrary dimensions, there is no mention there of any curse of dimensionality. In fact, in some publications, a parametric rate is derived. As we discuss below, this is because a directional alternative is considered. Indeed, even in dimension one, Ingster, Y. I. [(1987). Minimax testing of nonparametric hypotheses on a distribution density in the l_p metrics. Theory of Probability & Its Applications, 31(2), 333–337] has shown that the minimax rate is not parametric. In this paper, we extend his results to arbitrary dimension and confirm that the minimax rate is not only nonparametric, exhibits but also a prototypical curse of dimensionality. We further extend Ingster's work to show that the chi-squared test achieves the minimax rate. Moreover, we show that the test adapts to the intrinsic dimensionality of the data. Finally, in the spirit of Ingster, Y. I. [(2000). Adaptive chi-square tests. Journal of Mathematical Sciences, 99(2), 1110–1119], we consider a multiscale version of the chi-square test, showing that one can adapt to unknown smoothness without much loss in power.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2018.1435875 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:30:y:2018:i:2:p:448-471
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2018.1435875
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().