Functional data analysis: estimation of the relative error in functional regression under random left-truncation model
Belkais Altendji,
Jacques Demongeot,
Ali Laksaci and
Mustapha Rachdi
Journal of Nonparametric Statistics, 2018, vol. 30, issue 2, 472-490
Abstract:
In this paper, we investigate the relationship between a functional random covariable and a scalar response which is subject to left-truncation by another random variable. Precisely, we use the mean squared relative error as a loss function to construct a nonparametric estimator of the regression operator of these functional truncated data. Under some standard assumptions in functional data analysis, we establish the almost sure consistency, with rates, of the constructed estimator as well as its asymptotic normality. Then, a simulation study, on finite-sized samples, was carried out in order to show the efficiency of our estimation procedure and to highlight its superiority over the classical kernel estimation, for different levels of simulated truncated data.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2018.1438609 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:30:y:2018:i:2:p:472-490
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2018.1438609
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().