Bias reduction in kernel density estimation
Yousri Slaoui
Journal of Nonparametric Statistics, 2018, vol. 30, issue 2, 505-522
Abstract:
In this paper, we propose two kernel density estimators based on a bias reduction technique. We study the properties of these estimators and compare them with Parzen–Rosenblatt's density estimator and Mokkadem, A., Pelletier, M., and Slaoui, Y. (2009, ‘The stochastic approximation method for the estimation of a multivariate probability density’, J. Statist. Plann. Inference, 139, 2459–2478) is density estimators. It turns out that, with an adequate choice of the parameters of the two proposed estimators, the rate of convergence of two estimators will be faster than the two classical estimators and the asymptotic MISE (Mean Integrated Squared Error) will be smaller than the two classical estimators. We corroborate these theoretical results through simulations.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2018.1442927 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:30:y:2018:i:2:p:505-522
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2018.1442927
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().