EconPapers    
Economics at your fingertips  
 

Semiparametric jump-preserving estimation for single-index models

Guoxiang Liu, Xiuli Du, Mengmeng Wang, Jinguan Lin and Qibing Gao

Journal of Nonparametric Statistics, 2018, vol. 30, issue 3, 556-580

Abstract: Estimation of the single-index model with a discontinuous unknown link function is considered in this paper. Existed refined minimum average variance estimation (rMAVE) method can estimate the single-index parameter and unknown link function simultaneously by minimising the average pointwise conditional variance, where the conditional variance can be estimated using the local linear fit method with centred kernel function. When there are jumps in the link function, big biases around jumps can appear. For this reason, we embed the jump-preserving technique in the rMAVE method, then propose an adaptive jump-preserving estimation procedure for the single-index model. Concretely speaking, the conditional variance is obtained by the one among local linear fits with centred, left-sided and right-sided kernel functions who has minimum weighted residual mean squares. The resulting estimators can preserve the jumps well and also give smooth estimates of the continuity parts. Asymptotic properties are established under some mild conditions. Simulations and real data analysis show the proposed method works well.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2018.1444164 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:30:y:2018:i:3:p:556-580

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2018.1444164

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:30:y:2018:i:3:p:556-580