A nonparametric time-varying coefficient model for panel count data
Huadong Zhao,
Wanzhu Tu and
Zhangsheng Yu
Journal of Nonparametric Statistics, 2018, vol. 30, issue 3, 640-661
Abstract:
In this research, we describe a nonparametric time-varying coefficient model for the analysis of panel count data. We extend the traditional panel count data models by incorporating B-splines estimates of time-varying coefficients. We show that the proposed model can be implemented using a nonparametric maximum pseudo-likelihood method. We further examine the theoretical properties of the estimators of model parameters. The operational characteristics of the proposed method are evaluated through a simulation study. For illustration, we analyse data from a study of childhood wheezing, and describe the time-varying effect of an inflammatory marker on the risk of wheezing.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2018.1458982 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:30:y:2018:i:3:p:640-661
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2018.1458982
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().