Tail density estimation for exploratory data analysis using kernel methods
B. Béranger,
T. Duong,
S. E. Perkins-Kirkpatrick and
S. A. Sisson
Journal of Nonparametric Statistics, 2019, vol. 31, issue 1, 144-174
Abstract:
It is often critical to accurately model the upper tail behaviour of a random process. Nonparametric density estimation methods are commonly implemented as exploratory data analysis techniques for this purpose and can avoid model specification biases implied by using parametric estimators. In particular, kernel-based estimators place minimal assumptions on the data, and provide improved visualisation over scatterplots and histograms. However kernel density estimators can perform poorly when estimating tail behaviour above a threshold, and can over-emphasise bumps in the density for heavy tailed data. We develop a transformation kernel density estimator which is able to handle heavy tailed and bounded data, and is robust to threshold choice. We derive closed form expressions for its asymptotic bias and variance, which demonstrate its good performance in the tail region. Finite sample performance is illustrated in numerical studies, and in an expanded analysis of the performance of global climate models.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2018.1537442 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:31:y:2019:i:1:p:144-174
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2018.1537442
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().