EconPapers    
Economics at your fingertips  
 

Asymptotics of bivariate penalised splines

Luo Xiao

Journal of Nonparametric Statistics, 2019, vol. 31, issue 2, 289-314

Abstract: We study the class of bivariate penalised splines that use tensor product splines and a smoothness penalty. Similar to Claeskens, G., Krivobokova, T., and Opsomer, J.D. [(2009), ‘Asymptotic Properties of Penalised Spline Estimators’, Biometrika, 96(3), 529–544] for the univariate penalised splines, we show that, depending on the number of knots and penalty, the global asymptotic convergence rate of bivariate penalised splines is either similar to that of tensor product regression splines or to that of thin plate splines. In each scenario, the bivariate penalised splines are found rate optimal in the sense of Stone, C.J. [(12, 1982), ‘Optimal Global Rates of Convergence for Nonparametric Regression’, The Annals of Statistics, 10(4), 1040–1053] for a corresponding class of functions with appropriate smoothness. For the scenario where a small number of knots is used, we obtain expressions for the local asymptotic bias and variance and derive the point-wise and uniform asymptotic normality. The theoretical results are applicable to tensor product regression splines.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2018.1563295 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:31:y:2019:i:2:p:289-314

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2018.1563295

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:31:y:2019:i:2:p:289-314