EconPapers    
Economics at your fingertips  
 

Correlation curve estimation for multiplicative distortion measurement errors data

Zhenghui Feng, Yujie Gai and Jun Zhang

Journal of Nonparametric Statistics, 2019, vol. 31, issue 2, 435-450

Abstract: A correlation curve measures the strength of the association between two variables locally at different values of covariate. This paper studies how to estimate the correlation curve under the multiplicative distortion measurement errors setting. The unobservable variables are both distorted in a multiplicative fashion by an observed confounding variable. We obtain asymptotic normality results for the estimated correlation curve. We conduct Monte Carlo simulation experiments to examine the performance of the proposed estimator. The estimated correlation curve is applied to analyze a real dataset for an illustration.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2019.1580708 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:31:y:2019:i:2:p:435-450

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2019.1580708

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gnstxx:v:31:y:2019:i:2:p:435-450