Correlation curve estimation for multiplicative distortion measurement errors data
Zhenghui Feng,
Yujie Gai and
Jun Zhang
Journal of Nonparametric Statistics, 2019, vol. 31, issue 2, 435-450
Abstract:
A correlation curve measures the strength of the association between two variables locally at different values of covariate. This paper studies how to estimate the correlation curve under the multiplicative distortion measurement errors setting. The unobservable variables are both distorted in a multiplicative fashion by an observed confounding variable. We obtain asymptotic normality results for the estimated correlation curve. We conduct Monte Carlo simulation experiments to examine the performance of the proposed estimator. The estimated correlation curve is applied to analyze a real dataset for an illustration.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2019.1580708 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:31:y:2019:i:2:p:435-450
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2019.1580708
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().