Efficient semiparametric regression for longitudinal data with regularised estimation of error covariance function
Shengji Jia,
Chunming Zhang and
Hulin Wu
Journal of Nonparametric Statistics, 2019, vol. 31, issue 4, 867-886
Abstract:
Improving estimation efficiency for regression coefficients is an important issue in the analysis of longitudinal data, which involves estimating the covariance matrix of errors. But challenges arise in estimating the covariance matrix of longitudinal data collected at irregular or unbalanced time points. In this paper, we develop a regularisation method for estimating the covariance function and a stepwise procedure for estimating the parametric components efficiently in the varying-coefficient partially linear model. This procedure is also applicable to the varying-coefficient temporal mixed-effects model. Our method utilises the structure of the covariance function and thus has faster rates of convergence in estimating the covariance functions and outperforms the existing approaches in simulation studies. This procedure is easy to implement and its numerical performance is investigated using both simulated and real data.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2019.1651853 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:31:y:2019:i:4:p:867-886
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2019.1651853
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().