Quantile estimation of partially varying coefficient model for panel count data with informative observation times
Weiwei Wang,
Xianyi Wu,
Xiaobing Zhao and
Xian Zhou
Journal of Nonparametric Statistics, 2019, vol. 31, issue 4, 932-951
Abstract:
Panel count data frequently arise in various applications such as medical research, social sciences and so on. In this paper, a partially varying coefficient model of the panel count data with informative observation times is developed to accommodate the nonlinear interact effects between covariates. For statistical inference of the unknown parameters, quantile regression approaches are proposed, in which the baseline function and the varying coefficients are approximated by B-spline functions. Moreover, asymptotic properties for the estimators are established. Some numerical studies are performed to confirm and evaluate the finite-sample behaviours of the proposed approaches. Finally, the proposed model is applied to the bladder cancer tumour data as an application.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2019.1666128 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:31:y:2019:i:4:p:932-951
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2019.1666128
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().