EconPapers    
Economics at your fingertips  
 

Efficient pseudo-Gaussian and rank-based detection of random regression coefficients

Mohamed Fihri, Abdelhadi Akharif, Amal Mellouk and Marc Hallin

Journal of Nonparametric Statistics, 2020, vol. 32, issue 2, 367-402

Abstract: Random coefficient regression models are the regression counterparts of the classical random effects models in Analysis of Variance and panel data analysis. While several heuristic methods have been proposed for the detection of such random regression coefficients, little is known on their optimality properties. Based on a nonstandard ULAN property, we are proposing locally asymptotically optimal (in the Hájek-Le Cam sense) parametric, pseudo-Gaussian, and rank-based procedures for this problem. The asymptotic relative efficiencies (with respect to the pseudo-Gaussian procedure) of rank-based tests turn out to be quite high under heavy-tailed and skewed densities, demonstrating the importance of a careful choice of scores. Simulations reveal the excellent finite-sample performances of a class of rank-based procedures based on data-driven scores.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2020.1748625 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:32:y:2020:i:2:p:367-402

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20

DOI: 10.1080/10485252.2020.1748625

Access Statistics for this article

Journal of Nonparametric Statistics is currently edited by Jun Shao

More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:gnstxx:v:32:y:2020:i:2:p:367-402