Efficient pseudo-Gaussian and rank-based detection of random regression coefficients
Mohamed Fihri,
Abdelhadi Akharif,
Amal Mellouk and
Marc Hallin
Journal of Nonparametric Statistics, 2020, vol. 32, issue 2, 367-402
Abstract:
Random coefficient regression models are the regression counterparts of the classical random effects models in Analysis of Variance and panel data analysis. While several heuristic methods have been proposed for the detection of such random regression coefficients, little is known on their optimality properties. Based on a nonstandard ULAN property, we are proposing locally asymptotically optimal (in the Hájek-Le Cam sense) parametric, pseudo-Gaussian, and rank-based procedures for this problem. The asymptotic relative efficiencies (with respect to the pseudo-Gaussian procedure) of rank-based tests turn out to be quite high under heavy-tailed and skewed densities, demonstrating the importance of a careful choice of scores. Simulations reveal the excellent finite-sample performances of a class of rank-based procedures based on data-driven scores.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2020.1748625 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:32:y:2020:i:2:p:367-402
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2020.1748625
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().