Spatial autoregressive partially linear varying coefficient models
Jingru Mu,
Guannan Wang and
Li Wang
Journal of Nonparametric Statistics, 2020, vol. 32, issue 2, 428-451
Abstract:
In this article, we consider a class of partially linear spatially varying coefficient autoregressive models for data distributed over complex domains. We propose approximating the varying coefficient functions via bivariate splines over triangulation to deal with the complex boundary of the spatial domain. Under some regularity conditions, the estimated constant coefficients are asymptotically normally distributed, and the estimated varying coefficients are consistent and possess the optimal convergence rate. A penalized bivariate spline estimation method with a more flexible choice of triangulation is proposed. We further develop a fast algorithm to calculate the geodesic distance. The proposed method is much more computationally efficient than the local smoothing methods, and thus capable of handling large scales of spatial data. In addition, we propose a model selection approach to identify predictors with constant and varying effects. The performance of the proposed method is evaluated by simulation examples and the Sydney real estate dataset.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10485252.2020.1759596 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gnstxx:v:32:y:2020:i:2:p:428-451
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GNST20
DOI: 10.1080/10485252.2020.1759596
Access Statistics for this article
Journal of Nonparametric Statistics is currently edited by Jun Shao
More articles in Journal of Nonparametric Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().